S+WAVELETS: ALGORITHMS AND
TECHNICAL DETAILS

Andrew G. Bruce
Hong-Ye Gao
David Ragozin

StatSci Division
MathSoft, Inc.
1700 Westlake Ave. N, Suite 500
Seattle, WA 98109

Last revised
January 16, 1995

This research was supported by the Office of Naval Research (contract:
N00014-92-0066, technical monitor: Gary Hewer) and NASA, Stennis Space
Center (SBIR Phase II contract NAS13-587, technical monitor: Bruce Davis).

19951026 092

T T e g g g g
ﬁil}: Loldandal Ay o ln s Bl c?g

4 -

S+WAVELETS: Algorithms and Technical
Details

Abstract

A complete description is given for the algorithms in S+WAVELETS software
toolkit for wavelet and cosine packet analysis. These algorithms include wavelet
transforms, wavelet packet transforms, cosine packet transforms, and non-decimated
wavelet transforms. Implementations for the transforms and their inverses are given
for a variety of boundary treatment rules, including periodic, reflection, interval
wavelets (Cohen et al. [CDV93]), and zero/polynomial extension. In addition,
modifications to the standard algorithms are given to handle signals or images with
dimensions not divisible by a power of two.

Keywords: Discrete wavelet transform, discrete cosine transform, wavelet packet
transform, boundary rules, algorithms, S+ WAVELETS.

Accession For HFTUSER

! | ¥T1S QRA&X e
© DTIC TAB e

ribetiond

Saetholootiidtss A

Llebility Codeg

Avail avdfom

Spectal
1 !.

*

I

-

1 Introduction

This paper describes the algorithms in the S+WAVELETS toolkit for the wavelet and
cosine packet analysis. S+WAVELETS is an S-PLUS module for wavelet analysis of
signals and images. See Bruce and Gao [BG94, BG95] for details concerning the
S+WAVELETS.

The classical one-dimensional discrete wavelet transform maps a continuous sig-
nal f(t) € Ly(R) to the wavelet coeficients {s;. : n € Z} and {d;.: j < J,n € Z}.
The signal is defined on the entire real line R and the transform has an infinite
number of coefficients. Given coefficients {sx . : n € Z}, it is straightforward to
compute the coefficients at successively coarser levels j > k using the pyramid algo-
rithm [Mal89).

Application of the discrete wavelet transform to problems involving real data
involves several conceptual and computational hurdles. Typically, we are only con-
cerned with finitely sampled signals fi, fz, - -+, fa. The length of the signal sequence
N is not necessarily a power of two, and we may need to keep all of the data for the
analysis. In this paper, we address these issues by discussing a suite of algorithms
for applying the discrete wavelet transform and the wavelet packet transform to
finite length signals of arbitrary length.

To handle finite signals, special treatment is required at the boundaries. In
S+WAVELETS, several boundary treatment rules are available. These rules fall into
one of three categories:

1. Infinite Extension Model: The finite signal is extended to an infinite signal
c++, f-1, fo, fi, -+ and the the classical wavelet transform is applied to the
infinite sequence of coefficients. The transform coefficients are then selected
from the infinite transform which correspond to the original finite signal. Infi-
nite extension boundary rules in S+WAVELETS are periodic, reflection, zero,
and polynomial extension.

2. Recursive Extension: An ad hoc boundary rule can be defined by recursively
extending the signal at each filtering step in the wavelet or wavelet packet
transform. Infinite extension requires either storage of extra coefficients or
extremely messy bookkeeping. As a simple alternative to infinite extensive,

+ S+WAVELETS offers zero and polynomial recursive extension rules.

3. Wavelets on an Interval Model: Cohen, Daubechies, and Vial [CDV93]
formally defined a new wavelet transform on the compact set [a,b]. This
transform may be different from the classical wavelet transform defined on the
real line R. The periodic and reflection infinite extension rules can also be
viewed as wavelet transforms restricted to a compact interval.

Q™)

Cosine packet analysis is commonly known as local cosine analysis, and was
first introduced by Ronald Coifman and Yves Meyer [CM91]. The term “cosine
packets” was coined by David Donoho, another leading wavelets researcher, because
cosine packet analysis is a mirror image of wavelet packet analysis [CMQW90].
The difference is that localized cosine functions are used instead of wavelet packet
functions.

The Fourier cosine transform (FCT) of a signal f(t) is given by

[/ t) cos(wt)dt (1)

The discrete cosine transform is a discretized version of (1). There are four com-
monly used orthogonal discrete cosine transforms: DCT-I, DCT-II, DCT-III, and
DCT-IV. S+WAVELETS provides functions for two of these transforms: DCT-II
and DCT-IV.

Cosine packet analysis is a generalization of the discrete cosine transform (DCT).
The DCT is widely used in signal processing and image processing, and is particu-
larly valuable for coding and data compression applications. One drawback of the
DCT is the abrupt “cutoff” implicit in dividing the signal into disjoint blocks. This
can cause undesirable block effects, such as “Gibbs phenomena.” To avoid the prob-
lems caused by the abrupt cutoff, Coifman and Meyer [CM91] introduced a new type
of localized cosine transform with smooth cutoffs (tapers).

A cosine packet function is obtained by damping a cosine function down to zero
on an interval I using a taper function or bell function B;. Type II and type IV
cosine packet functions with frequency & defined on the interval I = [a,] are given
by

Ol = |2t cos (—’“%"—)))
cl() = &ﬂ,(t)cos(“(k“ﬁ)(t_“)) 3)

where A; = b — a. In order to define orthogonal transforms, a very special kind of
tapering function is needed.

*Section 2 gives the “vanilla” algorithm for computing the discrete wavelet trans-
form and wavelet packet transform. Treatment of the boundaries is ignored in the
vanilla algorithm. Section 3 gives an overview of the boundary rules for the dis-
crete wavelet transform and for the wavelet packet transform. Section 4 gives the
wavelet convolution and down-sampling algorithms. Section 5 gives the wavelet
convolution and up-sampling algorithms. Section 6 gives the algorithm for comput-
ing non-decimated (over-sampled) wavelet transform, along with an algorithm for

wavelet convolution and dilation. Section 7 describes the algorithms used to com-
pute the discrete cosine transforms (DCT-II and DCT-IV). The Section 7.3 describes
the boundary extension rules for cosine packets. Section 8 describes the algorithm
for computing a cosine packet transforms. The inverse cosine packet transform is
discussed in section 9. The equations for the tapers are given in Appendix section B.

This paper assumes the reader is familiar with the basic methods and algo-
rithms for wavelets and wavelet packets. For background on wavelets, refer to
[Str89, Dau92, Chu92, JLS94]. For background on wavelet packets, refer to [CW92,
CMW92, Wic94]. For further discussion regarding the algorithms and methods be-
hind cosine packet analysis (local cosine analysis), refer to the book by Wickerhauser
[Wic94].

2 Wavelet and Wavelet Packet Transforms: Vanilla

Algorithms

The discrete wavelet transform (DWT) and the inverse discrete wavelet transform
(IDWT) use Mallat’s[Mal89] remarkable fast pyramid algorithms. The wavelet
packet transform (WPT) and inverse wavelet packet transform (IWPT) involve a
generalization of the pyramid algorithm [CMQW90]. Mallat’s wavelet pyramid algo-
rithm has its roots in the pyramid algorithm of Burt and Adelson [BA83]. Chapter
3 of [Mey93] gives a historical perspective of the pyramid algorithm.

The forward algorithms involve convolution with low-pass and high-pass analysis
filters followed by down-sampling (decimation) operator. The backwards (inverse)
algorithms involve convolution with low-pass and high-pass synthesis filters followed
by up-sampling (zero-padding) operator. The convolution and down-sampling oper-
ators are described in section 4, and the convolution and up-sampling operators are
described in section 5. In this section, we describe the “vanilla” wavelet transform
and wavelet packet transform algorithms.

2.1 Forward Algorithm to Compute the DWT

The DWT pyramid algorithm is represented by figure 1. The basic components in
each stage of the pyramid are two analysis filters—a low-pass filter L and a high-
pass filter H—and a decimation-by-two operation. The down-sampling (decimation)
operation, indicated by a downward pointing arrow with the number 2, consists of
deleting every other value of the filter outputs.

Start with a signal z = (21, 22,...,2,). Let Wg, be the convolution and down-
sampling operator for filter F'. The pyramid algorithm of J multiresolution levels
consists of the following steps:

% 2 = @ = P 83 Y
[H] [H] [H]
42 42 42
4 dz d3
Figure 1: DWT pyramid algorithm.

[0] Initialize the input so = (So,1,90,2,- - -,50,»)" to the pyramid algorithm as fol-
lows:
S04 = 24 i=1,2,---,n.
Initialize the level index j = 1.

(1] Apply the convolution and down-sampling operator to s;—; with the high pass
filter H to obtain the level j detail coefficients

d; = Wa,i(sj-1)-
Store the d; coeflicients.

(2] Apply the convolution and down-sampling operator to s;—; with the low pass
filter L to obtain the level j smooth coeflicients

sj = WL,(sj-1).

If j < J, then increment j = 7 + 1, and go to step 1. Otherwise, store the s;
coefficients and quit.

The output of the algorithm is the set of DWT coefficients d,, ds, - -+, ds, and s;.

2.2 Backwards Algorithm to Compute the IDWT

The inverse discrete wavelet transform (IDWT) algorithm, represented by figure 2,
inverts the DWT pyramid algorithm in a straightforward manner. The basic compo-
nents in each stage of the reconstruction are the synthesis low and high pass filters
L* and H* and an up-sample-by-two operation. The up-sample operation, indicated
by an upward pointing arrow with the number 2, consists of inserting zeros between
every other value of the filter inputs.

Start with the DWT coefficients d;, d,, -+, dy, and s;. Let Wg; be the con-
volution and up-sampling operator for filter . The backwards pyramid algorithm

proceeds as follows:

[0] Initialize the level index j = J.

d d,
Figure 2: Reconstruction algorithm for the discrete wavelet transform.

[1] Apply the convolution and up-sampling operators to the level j coefficients to
obtain the level j — 1 smooth coefficients:

sj-1 = Wr1(s;) + Wa,1(d;).

[2] If j > 1, then go to step 1. Otherwise, for j = 1, set the output signal z to

Z; = S0, 1=1,2,---,n.

2.3 Wavelet Packet Table

The pyramid algorithm for wavelet packet table is represented by figure 3. The
basic components in each stage of the pyramid, similar to DWT case, are two anal-
ysis filters—a low-pass filter L and a high-pass filter H—and a decimation-by-two
operation. The down-sampling (decimation) operation, indicated by a downward

w0.0
/ x
w1.0 wi.l
w2.0 w2.1 w2.2 w2.3

\ Figure 3: Pyramid algorithm for wavelet packet table.

pointing arrow with the number 2, consists of deleting every other value of the filter

outputs.
Start with a signal z = (21, 22,..., 2.)’. Let Wg be the convolution and down-

sampling operator for filter F. The pyramid algorithm of J multiresolution levels
consists of the following steps:

[0] Initialize the input woo = (wo,0,1, Wo,0,2; - - - , Wo,0,n)" tO the pyramid algorithm
as follows:
Wo0,i = 2 1=1,2,---,n.

Initialize the level index 7 = 1.
[1] For each b = 0,1,...,2"! — 1, apply the convolution and down-sampling

operator to w;_;, with the high pass filter H and the low pass filter L to
obtain the level j coefficients. The coeflicients are stored in sequency order: if

b is even,
win = Wi (Wi-1p)
Wint1 = W (Wic1p);
and if b is odd,
Wiz = Wy (Wi-15)
Wizt = Wi, (Wi-1p).

[2] If j < J, then increment j = j + 1, and go to step 1. Otherwise quit.

The output of the algorithm is the set of wavelet packet coefficients {w;;}, which are

stored as a long vector (except when boundary=’’infinite’) (wy,0, w11, W0y« - - ergJ_l).

2.4 Inverse Wavelet Packet Transform

The inverse wavelet packet transform (IWPT) algorithm inverts the wavelet packet
pyramid algorithm. Start with a table of wavelet packet coefficients {w;;} where
j€{0,...,J} and b € {0,...,2? — 1} (to handle matching pursuits these do not
necessarily have to correspond to an orthogonal basis).

[0] Initialize a logical vector of length 2(J + 1) — 1 indicating whether the (7,)
block is in the wavelet packet table. Initialize the current level 7 = J.

[1] For each 6=0,1,...,2/"! — 1, if block (7,b) is in the table, apply the convo-
lution and up-sampling operator using the appropriate filter. If 6% %4 = 0 or
b%%4 = 3, where %% is the modulus operator, then used a low-pass filter L.
Otherwise use a high-pass filter H. Add the result to block (7 — 1, [6/2]) and
mark that block as in the wavelet packet table.

A

2] If j > 0, then decrement j = 7 — 1, and go to step 1. Otherwise quit.
g

The output of the algorithm is the reconstructed vector.

3 Overview of Boundary Rules for Wavelets

There are five basic types of boundary treatment rules for wavelet analysis supported
in S+WAVELETS: periodic, reflection, recursive extension (zero and polynomial),
interval, and infinite extension (zero and polynomial). These are described below.

Periodic Extension

The original series z;, z3,. .. , 2, is assumed to be n periodic, so z; = zign. Equiva-
lently, the wavelets are assumed to be periodic on the interval [0, n].

Reflection Extension

The original series z3, z9,... , z, is reflected at the boundaries and then periodically
extended using the algorithm given by [Bri92]. The reflection boundary correc-
tion gives perfect reconstruction only for symmetric wavelets (i.e., the biorthogonal

wavelets).

Recursive Extension

At each filtering step, the coefficients are padded at the beginning and the end of the
signal with zeros or with a polynomial extension. Three polynomial extension rules
are implemented in S+WAVELETS: poly0 (the first and last value are repeated),
polyl (the beginning and the end of the signal are extended using a polynomial
of degree one fit to the first two and last two values respectively), and poly2 (the
beginning and the end of the signal are extended using a polynomial of degree two
fit to the first three and last three values respectively).

Interval Wavelets

This rule corresponds to the special wavelet functions at the boundaries defined by
Cohen, Daubechies and Vial[CDV93]. The boundary wavelets are zero outside of
the range of the data. The transform retains the orthogonality properties of the
“classical” wavelet transform and is numerically stable.

For the interval wavelet, then a preconditioning transform can be (optionally)
applied to the signal before applying the interval wavelet transform. The precon-
ditioning transform preserves the “vanishing moment” property of wavelets at the
expense of introducing an additional non-orthogonal transform. See [CDV93] for
details.

Infinite Extension

The original series z1,23,... ,2, is extended once at the beginning of the filtering
procedure using a zero or polynomial extension. This is similar to the zero and
polynomial rules above, for which the coeflicients are extended at each filter step.
For the polynomial extension, a polynomial of degree pdeg is fit using a fraction
pfrac of the data (0 < pfrac < 1).

The infinite boundary rule produces an infinite set of wavelet coefficients. How-
ever, only a finite number of coeflicients is stored. Since a polynomial extension rule
is used, the stored coefficients can be used to compute the remaining coefficients.

Unlike the other boundary rules, the infinite boundary treatment is an “expan-
sionist” transform. This means that you end up with more coefficients than original
sample values. For a series of length n, you obtain n + p wavelet coefficients where
0 < p € n, independent of n. As a result, the output data structure for a transform
computed with the infinite boundary rule is different than transforms computed with
other rules (the transform is a “crystal list” object rather than a “crystal vector”
object: see [BG95]).

4 Convolution and Downsampling Algorithms

Let X = (zi,...,s) be the input signal and let f = (fi,..., fm) be the filter. The

“seneric” convolution and down-sampling operation is given by

Yk = Y fiTakria (4)
=1
Since z; is only defined for ¢ = 1,...,n, the summation in (4) needs to be modified

at the beginning and end of the signal. The way in which the summation is handled
at the boundaries, as well as the length of the output signal, depends on the bound-
ary rule. This section gives the algorithms for the convolution and down-sampling
operator (4) for the boundary rules of section 3.

Define the operator “convdown.general” by (4) with k& restricted to values for
which the filter does not extend beyond the ends of the input signal

n—m+2J

k=12...,[
1™ 2

The length of the output signal of the convdown.general operator, £ = lmz—ﬁ J,
is in general smaller than the desired length. In order to obtain enough output
coefficients (|n/2] or [n/2] + 1), extra values (roughly m — 2) must be padded to
X before calling the convdown.general operator.

The extra values can be all padded at the begining or at the end of X, or partly
at the begining and partly at the end. In S+WAVELETS, if the number of padding

9

values is even, an equal number of values are padded at the beginning and end. If
the number of padding values is odd, then one more value is padded at the end.

In the algorithms below (except for the reflection boundary rule) if f is of odd
length, we pad a zero to f to make it even length. The filter padding rule is as
follows: if f is a low-pass filter, f = (f,0); if f is a high-pass filter, f = (0, f). For
the reflection case, special filtering rules apply to odd length filters.

4.1 Periodic

The input signal X is assumed to be periodic with period n. The algorithm consists
of the following two steps:

[1] extend the input signal

X = (Tnept1r+--rTny T1yeeyTny T1y-..yTp)-

[2] apply the general convdown operator:
Y = convdown.general(X, f).
Note: If X is assumed to be periodic, then Y is also periodic. When n is even,

the period of Y is n/2. When n is odd, the period of Y is still n. Hence, sample size
of the original signal is restricted to multiples of 2/ for the periodic boundary rule.

4.2 Reflection

The input signal X is reflected and then (implicitly) periodized using the approach
described by [Bri92]. When a symmetric/antisymmetric filter is applied, the filtered
vector Y is of the same reflection/periodicity property. Following the notation of
[Bri92], we use the “E(1,1) extension” for odd length filter (i.e. m is odd) and the
“F(2,2) extension” for even length filter. The algorithm consists of the following

two steps:
[1] extend the input signal X to get X:
e n is even and m is even
!)2'=($p,...,a:1, Ti,eeyTny Tnyeony Tnopil)-
e n is odd and m is even, if f is a low-pass filter
X = (Zp,.. 1 T1, T1y-. s Tny Tnyevvy Tnmp)

and if f is a high-pass filter

X =(Tpy. ..y @1, T1yov oy Ty Tnyee oy Tnmptl)-

10

e n is even and m is odd, if f is a low-pass filter
X = (xp+27 cre9 T2y Tlye: oy Tny Tn—1y

if f is a high-pass filter

X = ($p+17"'?z2a Tiye++3Tny Tn-1,-

if f is a low-pass dual filter

~

X = (xp-}-ly"'az?a L1y-++3Tny Tn-1,-

and if f is a high-pass dual filter

~

X = (Tps2y-++, T2y Tlyevvy Ty Tn-t,

n is odd and m is odd, if f is a low-pass filter

X = (xp+2,"-a$27 Liye++3Tny Tn-1,-
if f is a high-pass filter
X = (xp+l’ «o3 T2y Tlyeey3Tny Tn-1,

if f is a low-pass dual filter

~

X = (Tpt1,--+9T2, T1y.-yTny Tn—-1,

and if f is a high-pass dual filter

X = (.'Ep+2,...,$2, T1ye++yTny Tn-1,-

[2] apply the general convdown operator:

Y = convdown.general(X, f).

4.3 Infinite (polynomial/zero)

The original signal Z is extended once at the beginning of the filtering procedure
using a zero or polynomial of degree pdeg extension. The polynomials are fit using

a fraction pfrac of the data.

The infinite boundary rule produces an infinite set of wavelet coefficients. Only a
finite number of coefficients are actually stored. The coefficients which are not stored
can be computed from the stored coefficients using a zero or polynomial extension.

11

ey Tnep);

RS xn—p—l);

ey mn—p—l);

vy Tnop)e

L] xn—p—l);

R S

ey Tn—p);

ey xn—p—l)-

Unlike the other boundary rules, the infinite boundary treatment is an “ex-
pansionist” transform. This means that in addition to the desired [n/2| interior
coeficients Y, we also save extra coefficients, Y, (left boundary coeflicients) and Y;
(right boundary coefficients). The number of extra coefficients depends only on M,
the maximum length of analysis filter and synthesis filter. For orthogonal wavelets,
the synthesis filters are the same as the analysis filters, so M = m.

Note: In S+WAVELETS, to handle the boundary coefficients, the output data
structure (object of class crystal.list) is different from other boundary rules
(object of class crystal.vector).

Let p=m/2—1and P = M/2—1. Define d = pdeg for the polynomial extension
and d = —1 for the zero extension. The algorithm contains the following steps:

[la] Initial polynomial extension: if the input signal is the original data, proceed
with this step followed by step 2. Otherwise, if the input signal are the output
of a previous convolution and down-sampling operations, skip to step 1b.

Let g=2(d+ P+ 1) + p and @ = max(d + 1, |n x pfrac+1]).

o If n is even, then

~

X=(a1,...,aq, T1y..49Tn, bl,...,bq).

o Otherwise, if n is odd, then

~

X=(a1,...,aq, Tiy0009Tn, bl,...,bq+1)

The coefficients (ay, . . ., a,) are the polynomial or zero extrapolations of (z1,...,zq)

and the coefficients (by,...,b,) are the polynomial or zero extrapolations of
(Tn-Q+1---,Zn). See appendix A for details on the polynomial and zero ex-
trapolations.

Skip to step 2.

[1b] Extend X using the existing boundary coeficients (from previous filtering

procedure) X; and X:)
! X =(Xy, X, X;)

Let N be the length of X and let ¢ = d + P+ 1+ p. Extend X to obtain X
to obtain

e If IV is even, then

A

X=(a1,...,aq, (il,...,:iN, b]_,...,bq).

12

e Otherwise, if N is odd, then

~

X=(a1,...,aq, .’i‘]_,...,iN, bl,...,bq+1).

The coefficients (a1, . . ., a,) are the polynomial or zero extrapolations of (z1,...,T441)
and the coefficients (b1,...,b,;) are the polynomial or zero extrapolations of
(zN=dy-..,ZN) (see appendix A). Note that pfrac is not used for this extrap-
olation.

[2] apply the general convdown operator to X
Y = convdown.general(X, f).

(3] Let b=d+ P+ 1and n' = |[(n+1)/2]. Obtain the interior coefficients Y,
the left boundary coefficients Y7, and the right boundary coeflicients ¥, by

Y = (s41,---)Tbsnt)
YZ = (517 seey gb)
K- = (gn’+b+17 ey gn'+‘2b)

On each end, d + P — 1 boundary coefficients are saved.

4.4 Interval

An alternative to the infinite padding model is to define a slightly modified wavelet
transform adapted for finite length signals. [CDV93] show how to construct or-
thornormal wavelet bases for intervals with compact support. In the interior of the
interval, the basis functions are identical to usual wavelet basis functions. However,
the basis functions at the boundaries are given by specialized edge functions ¢?,k
and ¢'?,k

The interval wavelets are implemented using special filters at the ends of the
series corresponding to the truncated and orthongalized wavelet basis functions.
They are only implemented for the discrete wavelet transform with “symmlets”:
s4, s6, s8, s10, si2, s14, s16. The special filters are stored as p+1 by 3p+2
boundary matrices B; and B,. Sample size n must divisible by 27 where J is the
makimum down-sampling level in the transform.

The algorithm consists of the following steps:

[0] precondition X to preserve the “vanishing moment” property of the original
wavelets. This step is optional and applies only to the original series. Let P
and P, be the left and right precondition matrices (transpose of S+WAVELETS
functions left.precondition and right.precondition respectively), then
(z1, ..y Zmp2) = Pe1, ..., Tmy2) and (Tpomja41s -+ Zn) = Pe(Tromjz41s - Ta)

13

(1] extend X by zeros:

14 14

X =(0,...,0, z1,...,2n, 0,...,0).
[2] apply the general convdown operator:
Y = convdown.general(X, f)
[3] apply the special filters to correct the first p+1 and last p+1 values of Y based
on the first 3p +2 and last 3p + 2 values of X. Let B, and B, (S+WAVELETS

functions left.interval and right.interval respectively) be the left and
right boundary matrices respectively, then

n (T
. = B .

Yo+1 \ Tap+2
Yn/2-p+1 / Tn-3p—1
. = B, .
Yn/2 ZTn

See [CDV93] for information on obtaining the boundary filters electronically.

4.5 Zero Recursive Extension

At each filtering step, the coefficients are padded at the beginning and the end of
the signal with zeros. This boundary rule applies to arbitrary sample size and filter
and is implemented as a special case of polynomial with pdeg = —1. The algorithm
consists of the following two steps:

[1] extend the input signal:
e n is odd and f is a low-pass filter
pt+1
; X=(0,...,0, z1,...,Zn, 0,...,0)
P

e otherwise

X’=(0,...,0, Ty, .oy Tn,y 0,...,0).

[2] apply the general convdown operator:

Y = convdown.general(f(,)

14

4.6 Polynomial Recursive Extension

At each filtering step, the coefficients are padded at the beginning and the end of
the signal using a polynomial extension of degree d = pdeg fit to the first d + 1 and
last d + 1 values respectively. This boundary rule applies to arbitrary sample size
and filter. The algorithm consists of the following two steps:

[1] extend the input signal:

e n is odd and f is a low-pass filter

-~

X =(a1,..+18p, T1y.v,Tny b1,y.nybpyr)

e otherwise

X = (a1y.+«yp, T1y--vyTny b1y...,bp).

where (ay,...,a,) are the polynomial extrapolations of (z1,...,%Z44+1), and
(by,...,by) are the polynomial extrapolations of (Zp-4,...,Zxs).

[2] apply the general convdown operator:

Y = convdown.general(X, f)

5 Convolution and Upsampling Algorithms

Let Y = (y1,...,Yyn) be the input signal and let f = (fi,..., fm) be the filter. The
“generic” convolution and up-sampling operation is given by

Tok-1 = Y fri-1¥irk—1 (5)

=1

L2k = Z f2ilirk-1 (6)
i=1
Like the convolution and down-sampling operator, the summation in (5) and (6)
needs to be modified at the boundaries.
Define the “convup.general” operator by (5) and (6) with the range of summation

restricted as follows:
k=1,2,....,n—p

where p = m/2 — 1. The filtered vector is of length 2(n — p), which is in general
smaller than the desired length 2n or 2n — 1. Therefore, in order to recover the
original vector, extra values should be padded to Y before calling convup.general
operator. The extra values are padded to the beginning and end in the same manner
as for the convolution and down-sampling operator.

As with the down-sampling algorithms with the exception of the reflection bound-
ary rule, we pad a zero to f if f is of odd length. The filter padding rule is as follows:
if f is a low-pass filter, f = (f,0); if f is a high-pass filter, f =10, f). For the re-
flection case, special filtering rules apply to odd length filters.

5.1 Periodic

When the original series X is assumed to be periodic with period 2n, Y is also
periodic with period n. Let p = m/2 —1 and the algorithm consists of the following
three steps:

[1] extend Y

~

Yz(yn—p+lv-",yna Yi,-+ -1y Yn, ylv"'ayp)

[2] apply the general convup operator:

~

X = convup.general(¥, f)

[3] select X from X:
X = (5P+17 tety ip+2n)-

5.2 Reflection

When the filter is symmetric/antisymmetric, Y is of the same reflection/periodicity

property as the original vector.
Let N be the length of the original vector, p = |m/2] —1 and ¢ = [(m +1)/4],
the algorithm consists of the following three steps:

[1] extend Y as follows:

e If N is even, m is even, then if f is low-pass filter

~

Y= (yqv"'7y1’ Y1,--+1Yn, yn7"'7yn—q+1)
else if f is a high-pass filter

Y= (—yq’-‘ 7Y Y1y e Yny T Yny . -y_yn—q-i-l)‘

o Else if N is odd and m is even, then if f is a low-pass filter
? = (yqy- Y1 Y1y ey Yny yn—la---,yn-—q)
else if f is a high-pass filter

Y = (—yq,- ey YLy Y1y e s s Yn, 07 ~Yn,y-.. -7—"yn—q+1)'

o Else if NV is even and m is odd, then if f is a low-pass filter (not dual)

~

Y= (yqy ces Y1y Y1905 Yny Yn—-1y. - 7yn-p+q—2)§

else if f is a high-pass filter (not dual)

ff: (yq+1,"'7y2’ Yiy-- 23 Yn, ym"'ayn-p-i-q—l);

else if f is a low-pass dual filter

Y = (yq+17"'7y2v Y1y -9 Yn, ym"')yn"'z"’rQ"l);

else if f is a high-pass dual filter (not dual)

Y= (yQ7"~7y17 Yiy-- -3 Yn, yn—la"'7yn~p+q-‘2)'

e Else if N is odd and m is odd, then if f is a low-pass filter

Y =Yg s¥1s Y1y-vv2Yny Ynye ooy Yn—ptq—1);
else if f is a high-pass filter

Y= (Ygt1r-++2Y2, Yire+ =1 Yny Yn=ly- s Ynopiq—1);
else if f is a low-pass dual filter

f/ = (yq+1,---,yz, Yi,-- 3 Yn, yn—1,~-~7yn-p+q—1);

else if f is a high-pass dual filter

~

Y =Ygy sY15 Y13 Yns Ynye -+ s Yn—piq—1)-
[2] apply the general convup operator
X = convup.general(Y, f)
where f = (f,0) if m is odd, and f otherwise.
[3] select X from X:

e if m is multiple of 4

e otherwise

5.3 Infinite (polynomial/zero)

Let N be the length of the original vector, p =m/2—1and P = M/2—1, where M
is the maximum length of analysis filter and synthesis filter. The algorithm consists
of the following steps:

[1] retract the boundary coefficients ¥, and Y7,
Y= (%, ¥, X))

and apply the usual polynomial extrapolation schemeto Y, let ¢; = [E_:HL(;MJ

and g2 = |.p—min21P,p!+1J’
?z(al’-”,aqw Y15+ YN, bla"'quz)

where (ai,...,a,) are the polynomial extrapolations of (y1,...,%4+1) and
(b1,...,b;) are the polynomial extrapolations of (Yn-d,...,¥n). Note that
when d = —1, zeros are padded and when p = P, q; = ¢2 = 0, i.e. no padding
is needed.

[2] apply the general convup operator,

X = convup.general(Y, f)

[3] get the interior, the left boundary and the right boundary coefficients: let
b=2(d+ P +1)—min(P,p),

X = (ib-i'lv KRR jEb-{-N)
Xl = (ib-’d—Pa vy i‘b)
X, = (EN+bs1,- -y EN4b+d+PHL)

As in convdown case, we save d + P — 1 boundary coefficients on each end.

5.4 Interval
Let ¢ = 3p + 2. The algorithm consists of the following steps:
(1] apply the general convup operator to Y,

X = convup.general(Y, f).

[2] extend X to the desired length (2n):

[3] apply the special filters to correct the first ¢ and the last ¢ values of X based

on the first ¢ and the last ¢ values of Y. Let B, and B, (computed from
dwt.matrix) be the left and right boundary matrices respectively, then

I \ (U
. podg Bl .
T3p+2 Yq
T2n—q+1 / Yn—g+1
: = B :
T2n / \ Yn

The boundary matrices can be computed in the following way: Let B be the
transpose of the 2¢ by 2¢ dwt .matrix and

B (By(L) | Ba(H))

B.(L) | B.(H)

then B; = By(L) and B, = B;(L) if f if a low-pass filter; and B, = B,(H)
and B, = B.(H) if f if a high-pass filter.

[4] inverse precondition (for final step of the synthesis only).

5.5 Polynomial/Zero

Let IV be the length of the original series X and ¢ = 2max(M/2, d+1, 1) where M
is the maximum length of analysis filter and synthesis filter. The algorithm consists

of the following 4 steps:

[1] apply the general convup operator to Y:

~

X = convup.general(Y, f)
and let n be the length of X.

[2] extend X to the desired length NV,

\J

e N is even
P P

X=(0,....0, #1,...,5n, 0,...,0
e N is odd and f is a low-pass filter

and if f is a high-pass filter

p p+1
N - ~
X=(0,...,0, #,...,%, 0,...,0

[3] compute the inverse dwt .matrix B for the dual filter. The boundary matrices
are the four corner matrices of B and are different for odd N and even N
(see below). Therefore there are totally 8 bounadry matrices, and they are
pre-computed and stored in the dictionary.

[4] apply the left boundary matrix B, and the right boundary matrix B, to correct
the boundary coefficients.

e When N is even, B is a 2¢ by 2¢ matrix. If f is a low-pass filter, the
boundary matrices By and B, are ¢ by ¢ matrices, and defined by

By = B[l:q, 1:q]
Br = B[(q+1):2q, 1:q]5
and if f is a high-pass filter,

By = Biiy, (g+1):2q]
B, = DBig+1):2q, (g+1):2q)
And then
T1 / Y1
. T
z, Yq
IN-q+1 YN-q+1
. - B .

IN YN

e When N is odd, B is a 2¢ + 1 by 2¢ + 1 matrix. If f is a low-pass filter,
the boundary matrices By and B, are ¢+ 1 by g+ 1 matrices, and defined

by
' Br = Bi(g41), 1:(a+1)]
B, = Bi(g+1)(2¢+1), 1:(0+1)]5
and then
1 N
= B,| :
Tg+1 Yg+1

20

ITN-q YN-q
. — Br E :
N YN

if f is a high-pass filter, B, and B, are ¢ + 1 by ¢ matrices, and defined

by
Br = B(g+1), (g+2)20+1)]
Br = Bigr1)(2e+1), (a42):(2041)]s
and then
(T /51
: = By| :
Tq+1 Yq
(IN-q YN-g+1
. | = B|
TN) YN

6 Algorithms for the Non-Decimated Wavelet
Transform

Let X = (z1,...,Z,) be the input signal and let f = (f1,..., fm) be the filter. The
“generic” convolution operation is given by

Y =) fiZktio1 (7)
1=1
Since z; is only defined for ¢ = 1,...,n, the index k of the output signal Y is
restricted to k =1,2,...,n — m + 1. Therefore, the output signal is always shorter
than the input sugnal X. In order to obtain enough output coeflicients, m — 1
extra values should be added to X. Currently, we have only implemented periodic
boundary extension.

6.1 Non-Decimated Wavelets: Vanilla Algorithms

Define the convolution and dilation operator “convdil.general” by dilating filter f
and the calling (7). For given input signal X = (z1,...,z.), filter f = (f1,..., fm)
and a desired level j (therefore the dilation factor is 27), define the dilated filter f\9)
by inserting 27 — 1 zeros in each of the adjacent f’s, i.e.

27 -1 27 ~1
f(J) :(fla07"°507 f?a"‘707"'107 fm)

21

and then apply the “generic” convolution operator (7) to X and f@,
Let m; be the length of f(), then m; = (m — 1)(2/ — 1) + m. Hence, for given

sample size n and filter length m, the dilation level j is restricted to j < log,(2=L).

6.2 Periodic Convolution and Dilation Operator

Forward: The algorithm consists of the following steps:

[0] set level j = 0.

[1] at level 7, let p = lﬂ’:,ll-J, qg= [%J-J and extend the input signal X

X = (Ta-pt1s-yTny T1yevryTny T1ye0n,Tq)-

[2] apply the general convolution operator (7):
Y = convdil.general(X, rev(f), 7).

[3] set j =7+ 1. If j < J, go to step [1].
Inverse: The algorithm consists of the following steps:

[0] set level j = J.

(1] at level 7, let p = |_7—"§-J, q= [Ti,;—lJ and extend the input signal X

~

X = (Tnept1s-- 1Ty Thyeeey Tny T1yeen, Tg)e

[2] apply the general convolution operator (7):

Y = convdil.general(X, f, j —1)/2.

[3] set j =7 —1. If j >0, go to step [1].

6.3 The A Trous Wavelet Transform

An alternative non-decimated wavelet transform is given by the “d trous” (“hole”)
algorithm: see [Dut87, She92, SMB94]. Like the non-decimated wavelet transform
computed using nd.dwt, the ¢ trous algorithm produces n wavelet coefficients at
each multiresolution level for a signal with n sample values. The main difference is
that the detail coefficients in the a trous algorithm are computed through simple
differences between the smooth coefficients at different levels:

dik = Sj-1,k — Sjk (8)

The detail coefficients produced by the nd.dwt function are computed using a dilated
high-pass wavelet filter.

7 Computing the DCT

This section gives discusses the algorithms used to compute the DCT-II and DCT-
IV transforms. For details concerning algorithms for the DCT, refer to the book by
Rao and Yip [RY90].

For a discrete signal fi, fa, ..., fa, the DCT-II is defined as

- 1)k
g,flz —skatcos<M) k=0,1,...,n—1. (9)
et 2n
The scaling factor s is defined by

{1 ifk#0andn
Sk = I ifk=0orn

The inverse DCT-II is given by

2i — 1)k ,
[kokskcos(o) i=1,...,n. (11)

The DCT-1IV is defined as

Zf,cos(1)(2k+1)ﬂ-) k=0,1,...,n =1 (12)

1—1 47’2

The inverse DCT-IV is given by

\/- 0s ((Qi_ D2k + U”) i=1,...,n (13)
k—-o 4n

For a discrete signal f = (f1, f2, ..., fa), the DCT’s and their inverses can be
computed from the FFT of the extended signal obtained by padding p zeros at the
end. Define the extension operator E,(x) for the vector x = (z1, z2, ..., Ta) by

z: t=1,2,---,n
. Ep(x)—{o t=n+1,n+2,...,n+p

Define the FFT G(y) of a vector y =(y1, y2, ..., Ym) by

Y)k-‘—‘iytexp(—i%rk(t—l)/m) k=0,1,---,m-1 (14)

23

7.1 Algorithm for the DCT-II

For the DCT-II, pad p = n zeros and compute the FFT of the signal and take the
first n frequencies of f = G(E,(f)). The DCT-II coefficients ¢ = (co, ¢2, - .., Cn-1),
are given by

The inverse DCT-II can be obtained by padding p = 3n zeros to the DCT-II coef-
ficients c, dividing the first DCT coefficient co by v/2, and taking the FFT. From
the FFT ¢, the original signal is reconstructed as follows:

2, .
fe = ﬁRe(Cz(k—1)) k=1,2,...,n. (16)

For signals of length 27, the DCT-II is obtained from the discrete Hartley trans-
form (DHT). This is a fast algorithm which avoids the need to double the signal
length (as is the case when the DCT-II is computed from the FFT) [Mal86]. The
discrete Hartley transform [SJBHS85] is defined by

szi(cos<g£(—t;—l)f—)+sin(-2—]i(—t—n_—lﬁ))ft, k=0,1,---,n—=1 (17)

t=1

7.2 Algorithm for the DCT-IV

For the DCT-1V, pad p = 3n zeros and compute the FFT of the signal f= G(E3,(f)).
The DCT-1V coefficients ¢ = (co, ¢z, - - -, Cn—1), are given by

Ck = \/% (cos ((—2%-'—_—1—)1> Re(faxs1) + sin (Q%—l-)i) Im(f2k+1)> : (18)

n

The inverse DCT-IV is also given by (18), with the coeflicients and signal values
reversed.

7.3 Boundary Extension Rules

Since the smooth tapers extend beyond the ends of the analysis intervals, it is nec-
essary to extend the data at boundaries. This is similar to the boundary correction
algorithms required in wavelet analysis.

For a taper of length 2m < n, it is necessary to extend a signal of length n

(f1s f2, -.-» fa) by m values on each side to a obtain a signal of length n + 2m
(f=m+1y f=m+2y -+ +y fa4m). There are three boundary extension rules available in
S+ WAVELETS:

24

cp.reflect: The signal is reflected at the ends using the same (4, —) polarity as the
folding operator. The extended signal is

- foiv1 fori=-m4+1,-m+2,---,0
fi=< f: fori=1,2,---,n
fon—it1 fori=n+1n+2,--- n4+m

zero: The signal is zero padded, so the extended signal is

{ 0 fori=-m+1,-m+2---,0

~

f,'= f,‘ fori=l,2,--~,n

0 fori=n+1,n+2,---,n+m

periodic: The signal is assumed to be periodic and wrapped around at the ends,
so the extended signal is

- fami fori=—-m+1,-m+2,---,0
fi={ fi fori=1,2,--+,n
fien fore=n+1l,n+2,---,n+m

This is the default boundary extension rule in S+WAVELETS for cosine packet
analysis.

Only the periodic boundary extension preserves orthogonality for the boundary
blocks. The boundary blocks for the cp.reflect and zero extensions are only
nearly orthogonal.

Note: Instead of extending the data, Meyer [Mey93] suggests modifying the
tapers at the boundary. By using a discontinuous “boxcar” taper, there is no need
to extend the signal beyond the boundary. This approach leads to an orthogonal

transform.

8 Computing the Cosine Packet Transform

Let X = (z1,...,2,) be the signal and partition the signal into p contiguous blocks:
Bi,...,B,. The jth block has n; coefficients and is given by

. sz(fijv"'7fij+nj—1)
where ¢; =1 and ¢j41 = ¢; +n; for j =1,... ,p— 1. Let 2m be the length of the
taper; Each block B; is of length 2777, Let 2m be the length of the taper where m
is less than or equal to half of the length of the shortest block. Let length m vectors

b = (B3 B)y B(T))

2m 2m
bext = 1- biznt

25

be the weights of the interior and exterior taper window respectively. See section B

below for the tapering functions 3(t).
The cosine packet transform is computed by applying four basic operators to

each block B;:
1. Use boundary rule to create boundary blocks Bg and B,41:
e periodic

By, = B,
Bp+1 = By

Note that we only need the first m values.

® Zero m

Bo = Bp+1 = (0, ,0

e cp.reflect

By = rev(B)
By = —rev(By)

Note that blocks By and B,y require only m values.

2. Extend block B; on the left and right using the neighboring blocks B;_; and
B, to obtain the extended signal f = (f_m+1, f-m+2, -+, fn,~+m)!

- fimim,y4i fori=-m+1,-m+2,---,0
fi=1< fii for:=1,2,---,n; (19)
fivri fori=n;+1,n;+2,---,n;j+m

For a block of length n;, the signal f is of length 2m + n;.

3. Apply the interior and exterior taper windows b, and beyx: to block f to obtain
the tapered block g as follows:

rbext(_i‘*‘l)ﬁ‘ fori=-m+1,-m+2,---,0

bine () fi fori=1,2,---,m
fori=m+1,m+2’...,nj_m (20)
bim(nj—i+l)ﬁ fori=n;—m+1ln,—m+2,---,n;
\bext(i—n_j)ﬁ fori=n;+1,n;+2,---,n; +m

I
Th

g:

26

4.

Fold m values on each end as follows:

gi + 9-is1 fori=1,2,---,m
§1= gi forizm—*—]_’m_}.z,...,nj_m (21)
Gi = Gnj+(nj—i)+1 for z = n; —m+1’nj _m+2’,._,nj

This yields a “folded” signal § = (g1, 2, - - -, gn,) of length n;. This folding
is said to have (+, —) polarity, since the reflected signal is added on the left
boundary and subtracted on the right boundary.

Apply the DCT to the tapered and folded signal g to obtain the CPT coeffi-

cients ¢; = (¢;1,¢j2,- - - ,Cj,nj)-

Computing the Inverse Cosine Packet Trans-
form

The inverse cosine packet transform is obtained by reversing the steps of the forward
cosine packet transform. Initialize the output signal f to a vector of n zeros (0, 0,
.., 0). For each block 7 = 1,...,p, of CPT coeflicients c;, do the following four

steps:
1.

Apply the inverse DCT to the coefficients c; to obtain the tapered and folded
signal g.

Unfold the signal using the (+, —) polarity to obtain the unfolded signal g of
length n + 2m.

g—i+1 fori:—m+1,_.m+2,,_,’0
gi =9 G fori=1,m+2,---,n; (22)
-gnj+(nj—i+1) fort=mn;4+1,n;+2,---,n;+m

ks ~
Untaper g to obtain the extended signal f:

Gi/bexs(—1 + 1) fori=-m+1,-m+2,---,0

i/ bine (2) fori=1,2,---,m

gi fori=m+1m+2,---,n;j—m (23)
Gi/bm(n; —1+1) fori=n;—m+1,n;—-m+2,---,n;

Gi/bexe (1 — 1j) fori=n;+1,n;+2,---,n;+m

e
i

Separate f into three blocks: left block Bﬁ-e), central block Bgc) and right block
B{.

J

~

BY = (00, e

27

BY = (fuifa)
Bgr) = (fnj+17"'7fn,‘+m707"'70)

Now accumlaté the blocks as follows to produce the blocks for the output signal:

Bl(f) B{c) B§T)
Bél) Bgc) Bér)

. " Bt B@ BO
BB B.: B,

The signal blocks By, ..., B, are constructed by adding the appropriate left, central
and right blocks, e.g. By = B{" + B{ + B{.
Correct the boundary blocks By and B, based on the boundary extension rule:

e periodic:
B, = B +B{"
B, = B,+BY,

® Zero:

(B1(1),+.0; By(m)) =

(Bp(n), ..., Bp(n —m +1)) =

e cp.reflect:

(B1(1), ..., Bi(m))
bint(bint + bext)
(Bp(n)’ 1) Bp(n —m+ 1))
bint(bint + bext) .

(B:(1), ..., Bi(m))

. (Bp(n), ..y Bp(n — m + 1))

A Polynomial and Zero Extrapolation

In particular, for d = 0, a;’s are repeated values of Ave(zy,...,z¢). Note that for
d= -1, (as,...,aq) = (b1,...,by) =(0,...,0).

28

For general polynomial extrapolation, define a Vandermonde matrix of (¢;,...,%,):

1 1 1
ty t tn
.Vm(tl,"'ytn) = ' .2
t t7271 tr (m+1)xn
and V = Vi(0, 545, .., 322, 1), Ve = Va5, - - o) and Vi = Vi(gy, -, BET0).
Then
a1
: V,(VV')~
Qq
and
b1 Tn—Q+1
= VA(VV)V
b, Tn

B Tapers for Orthogonal Cosine Packets

Very special tapering functions B; are needed for the cosine packets transforms.
Because the cosine packet functions overlap, only certain types of tapers preserve
orthogonality in cosine packet analysis (see [AWWO2, Wic94]). S+ WAVELETS offers
7 different tapers 5y which preserve orthogonality:

boxcar, polyl, poly2, poly3, poly4, poly5, trig

The boxcar taper is discontinuous, and is used for the block DCT. The polylis a
polynomial taper with one continuous derivative. Likewise, the poly2, ..., polyS
are polynomial tapers with 2-5 continuous derivatives. The trig taper is based
on trigonometric functions, and is the smoothest taper available in S+WAVELETS.
The default taper in S+WAVELETS is the poly2 taper.

A tapering function 3 defined for an interval I = [e, §] has the form

r0 t<a—éq

y(%ﬂ) a—by<t<a+b,

‘ Br(t) =14 1 a+6, <t<B—6p (24)
MEFE=) B-da<t<B+5p

0 t>B+6s

\

where p(-) is the left-bell function satisfying
0 t<0
ut) = { 1 t>1

29

and p(t) + (1 —t) = 1. The parameter 8, = €,A1, with Ar = 8 — a, defines the
tapering region for the left hand side of the interval; and é3 = €3A; defines the
tapering region for the right hand side, with the constraint €, + ¢g < 1.

The specific form of these tapers is as follows:

boxcar The boxcar tapering function is given by

[0 ift<1/2
“(t)‘{l ift>1/2

polyl , ..., poly5 A polynomial tapering function of order p = 1,..., 5 is given
by
0 t<0

po(t) = ¢ (P o bit 0<E<]

1 t>1
where (bo, by,...,b,) = A7%(1,0,...,0) with

+i-1
Ap = (tiogijer @i = (p i >

The polynomial tapers are available for p = 1,2,...,5, with higher order
tapers providing a greater degree of smoothness.

trig The tapering function for the trigonometric window is given by

0 t<0
p(t) =4 sin (-’45 (1- cos(wt))) 0<tL1
1 t>1

The trigonometric taper is the smoothest taper available in S+WAVELETS.

References

[AWW92] P. Auscher, G. Weiss, and M. V. Wickerhauser. Local sine and cosine
N bases of Coifman and Meyer and the construction of smooth wavelets. In
Charles K. Chui, editor, Wavelets: a tutorial in theory and applications,

pages 237-256. Academic Press, Inc., San Diego, CA, 1992.

[BA83] P. J. Burt and E. H. Adelson. The laplacian pyramid transforms for
image coding. [EEE Transactions on Communications, 31:532-540,
1983.

30

[BG94]

[BGY5]

[Bri92]

(CDV93]

[Chu92]
[CMo1]

[CMQW90]

[CMW92]

[CW92]

[Dau92]

[Dut87]

[JLS94]

Andrew G. Bruce and Hong-Ye Gao. S+WAVELETS Users Manual.
StatSci Division of MathSoft, Inc., 1700 Westlake Ave. N, Seattle, WA
98109-9891, 1994.

Andrew G. Bruce and Hong-Ye Gao. S+WAVELETS: An object-
oriented toolkit for wavelet analysis. Technical report, StatSci Divi-
sion of MathSoft, Inc., 1700 Westlake Ave. N, Seattle, WA 98109-9891,
1995. ‘

Christopher M. Brislawn. Classification of symmetric wavelet trans-
forms. Technical report, Los Alamos National Laboratory, Los Alamos,
New Mexico, 87545, 1992.

A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast
wavelet transforms. Applied and Computational Harmonic Analysis,
1:54-81, 1993.

C. K. Chui. An introduction to wavelets. Academic Press, Inc., San
Diego, CA, 1992.

R. Coifman and Y. Meyer. Remarques sur I’analyse de Fourier a fenétre.

C. R. Acad. Sci. Paris, 312:259-261, 1991.

R. Coifman, Y. Meyer, S. Quake, and V. Wickerhauser. Signal pro-
cessing and compression with wavelet packets. Technical report, Yale

University, 1990.

R. Coifman, Y. Meyer, and V. Wickerhauser. Wavelet analysis and
signal processing. In Wavelets and Their Applications, pages 153-178.
Jones and Bartlett Publishers, Boston, 1992.

R. Coifman and V. Wickerhauser. Entropy-based algorithms for best
basis selection. IEEE Transactions on Information Theory, 38(2):713-
718, 1992.

I. Daubechies. Ten lectures on wavelets. Society for industrial and

applied mathematics, Philadelphia, PA, 1992.

P. Dutilleux. An implementation of the “algorithme a trous” to com-
pute the wavelet transform. In J. M. Combes, A. Grossman, and Ph.
Tchamitchian, editors, Wavelets: Time-Frequency Methods and Phase
Space, pages 298-304. Springer-Verlag, 1987.

Bjorn Jawerth, Yi Liu, and Wim Sweldens. New folding operators for
image compression. In SPIE Proceedings, Wavelet Applications, volume
2242, Orlando, FL, April 1994.

31

[Mal86]

[Malg9]

| [Mey93]
[RY90]

[She92]

[SJBHS5]

[SMBY4]

[Str89)

[Wic94]

AL

H.S. Malvar. Fast computation of the discrete cosine transform through
the fast Hartley transform. Electronic Letters, 22(7):352-353, March
1986.

Stéphane Mallat. A theory for multiresolution signal decomposition:
the wavelet representation. IEFEE Transactions on Pattern Analysis
and Machine Intelligence, 11(7):674-693, 1989.

Yves Meyer. Wavelets: Algorithms and Applications. SIAM, 3600 Uni-
versity City Science Center, Philadelphia, PA 19104-2688, 1993.

K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press,
Inc., San Diego, CA, 1990.

Mark J. Shensa. The discrete wavelet transform: Wedding the A
trous and Mallat algorithms. IEFEE Transactions on Signal Process-
ing, 40(10):2464-2482, 1992.

H. V. Sorenson, D. L. Jones, C. S. Burrus, and M. T. Heideman.
On computing the discrete Hartley transfrom. I[EEE Trans. ASSP,
33:1231-1245, 1985.

Jean-Luc Starck, Fionn Murtagh, and Albert Bijanoui. Multiresolution
support applied to image filtering and restoration. Technical report, Ob-
servatoire de la Cote d’Azur, B. P. 229, F-06304 Nice Cedex 4, France,
1994.

Gilbert Strang. Wavelets and dilation equations: A brief introduction.
SIAM Review, 31(4):614-627, 1989.

Mladen V. Wickerhauser. Adapted Wavelet Analysis — from theory to
software. A. K. Peters, Ltd, 1994.

IH REPLY
REFERTO

o
o~
)
N
Qs
Q
O
N
N

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITICN)

DEFENSE TECHNICAL INFORMATION CENTER
CAMENON STATION
ALEXANDRIA, VIRGINIA 22304-6145

DTIC-OCC

SUBJECT: Distribution Stalements on Technical Documents

OFFICE OF MAVAL RESEARCH
CORPORATE PROGEAMS DIVISION

. ONR 353
TO: §00 MORTH QUINCY STREET
ARLINGTON, VA 22217 -56C0

1. Relerence: DoD Direclive 5230.24, Distribution Stalements on Te;:chnical Documents,
18 Mar 87. o

2. The Defense Technical Information Cenler received the enclosed report (referenced
below) which Is not marked In accordance wilh the above reference.
TECHNICAL DETAILS REPORT

N00014-92-0066
TITLE: S+ WAVELENGTHS:

ALGORITHMS AND TECHNICAL
DETAILS

3. We rédljesl the appropriale distribution slatement be assigned and the
to DTIC within 5 working days. R

.y "
[
4. Approved dislribl'g,llon stalements are listed on lhe reverse of this leller. |f you have any
queslions regarding these sltalements, call DTIC's Calaloging Branch, (703) 274-6837.

report returned

FOR THE ADMINISTRATOR:

1 Encl GOPALAKRISHNAN NAIR
Chlel, Cataloging Branch

FL-171

Jul 93

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

DISTRIBUTION STATEMENT B:
DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY: .

(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED

TO (Indicate Conlrolling DoD Office Below).

DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED
TO (Indicale Conlrolling DoD Olfice Below).

DISTRIBUTION STATEMENT D: r

I
DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicale Reason
and Dale Below). OTHER REQUESTS SHALL BE REFERRED TO (Indlcale Conlrolling DoD Olfice Below).

DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DOD COMPONENTS ONLY; (lhdlcale Reason and Dale Below).
OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Oflice Below).

DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicale Conlrolling DoD Ollice and Dale
Below) or HIGHER DOD AUTHORITY.

DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE
WITH DOD DIRECTIVE 5230.25, WITHI-IOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC
DISCLOSURE, 6 Nov 1984 (Indicale dale of delerminalion). CONTROLLING DOD OFFICE IS (Indicate

Conlrolling DoD Office)."

The cited documents has'been reviewed by compelent aulliorily and (he following distributlon slalement Is

hereby authorized.

ﬁ/ OFFICE_OF NAVAL RESEARCH

(Stalemenl) ggf'??P(_)i{ATE PROGRAMS Division (Controlling DoD Olfice Name)
AN N
800 MORTH QUINCY STRE
o CET
ARLINGTON, va ’2217-\5660
(Reason) (Conltrolling DoD Ollice Address,
DEBRA T, Hugy IES e Clty, Slale, Zip)

DE TY Dl.r\‘.".'(,"l'()R
DU TE PROCRAMS OFFICE
(Signaturé & TW‘J Name) (Assligning Ollice) (Date Statement Assigned)

9 5Ep 1yg5

